24

Web Threats

The topic of Web threats is one that you could spend an entire book discussing,
and lots of thick and juicy books out there are doing just that. This chapter
doesn’t attempt to cover all that information and earns its keep in this book by
showing you how to get started penetration testing your organization for Web
threats. It examines common Web threats from three different angles—the client
level, the server level, and the service level—as shown in Figure 24-1.

)
NS

>

Web client Web server
Client-level Service-level threats Server-level
threats threats

Figure 24-1 Common Web threats from three perspectives.

This chapter also describes countermeasures and provides tests to verify
that those defenses have teeth—sharp ones! The guinea pigs used in the exam-
ples are Microsoft Internet Explorer and Internet Information Services (I1S);
however, the threats discussed in this chapter are vendor-neutral, so you will
still find the information important regardless of the Web solution your organi-
zation has chosen. There’s a fair amount of material to cover, so let’s start.

399

400

Part IV Security Assessment Case Studies

Client-Level Threats

The use of Web content has quickly expanded into the user space. E-mail cli-
ents, for instance, now support HTML-based messages, and some application
GUIs are HTML-based. Also reaching further into the user space is the Web
attack surface area. Attackers now commonly target the client just as much as
they have the Web server; here are some common threats they pose:

B Cross-site scripting attacks

B Unpatched Web clients

Cross-Site Scripting Attacks

A cross-site scripting attack (XSS) occurs when an attacker injects malicious
HTML data into Web content on your organization’s Web servers, causing the
script to execute on the browser of the client viewing the Web content. You
refer to the attack as “cross-site” because the script being executed is in the
security context established between the client and the website, not in the secu-
rity context between the attacker and the client. In the case of XSS, the attacker
is using the Web server content to attack the client rather than attack in the tra-
ditional direct fashion. Let’s take a look at an example to see how XSS attacks
work.

Cross-site scripting can be known by the initials CSS or XSS.
Currently, it is more commonly referred to as XSS to avoid confusion
with the abbreviation for “cascading style sheets.”

The companion CD includes a compressed file named
XSSExample.zip that contains a sample ASP.NET website that dem-
onstrates XSS attacks as well as countermeasures you can use to mit-
igate them.

When you load the XSSExample site, you have three options to choose
from, as shown in Figure 24-2. The first and third options illustrate two coun-
termeasures you can use to mitigate XSS attacks and are discussed later in this
chapter. The second option on this test site illustrates XSS attacks.

Chapter 24 Web Threats 401

2} Cross Site Scripting Examples - Microsoft Internet Explorern

File Edit Wisw Favorites Toolks Help o
eﬁack - O - Iﬂ IELI () I search g pFavories @Pveda &F) - i [- _J E o, §
Address | ttpijiTestsite/xS5Example. htm B> B

Cross-Site Scripting Examples

The following links take you to sample ASP.MET web pages that illustrate some of the various degrees of security with
reqard ta XSS attacks. To try the examples out, just enter some seript into the input fields instsad of your name (&.g.,
you could use <script=alert{'®S351"); «/script> as a simple test).

2 Default=\slidating

ASP.NET pages are safe by default because they automatically validate input for potential malicious script. If seript is
found in input then an sxception will be thrown. 1f unhandled (as is the case in this sxample), it will lead to an error
page. This behavior is cantrolled thraugh the validateRequest atiribute, which is set in machine.canfig to be true.
Unless chanasd by the web administrator, this means that all pages served will be dane so with input validation. This
attribute can be altered in a virtual root's web.config file or in the Page directive of any given web page.

2! Insecure=Hot Validating

By specifying validateRequest="false" in the Page directive of an ASP.NET page we can disable input validation
for the page. The result is that input fields are now subject to malicious script. It is possible that the page's author
does her own validation, but by default we would consider the page to be insecure.

*! Insecure=Not Yalidsting [but safe due to HTML encoding}

Just because we have a validateRequest="false" sttribute in the Page dirsctive of an ASF NET page doss not
mean that it is insecure, As a continuation of the last example, this page HTML encodes the user input, thus defeating
the ¥55 attack.

&) & Lacal intranet

Figure 24-2 XSSExample demonstration site main menu.

When you click the second option, you are presented with a simple field.
Whatever you type in that field gets echoed back to you. If you type Brenda
Diaz, the page produces the output “Hello, Brenda Diaz!” Nothing dangerous
so far. Now see what happens when you enter something like
<script>alert(‘XSS — Evil Script Running on Your Browser!);</script>.
This time, a dialog box with the message “XSS — Evil Script Running on Your
Browser!” pops up, as shown in Figure 24-3.

2} Cross Site Scripting Example #2 - Microsoft Internet Explorer

File Edit Wisw Favorites Toolks Help o
eﬁack - Iﬂ IELI N /T‘J Search \#T:(Favnrwtes @ e E) - :; | E i 3
Address | ttpijiTestsiteftwo, aspx B> B

Cross-Site Scripting Example #2

Hello, |

<script=alen(%35 - Evil 3

Microsoft Internet Explorer

1 %55 - Evil Seript Running On Your Browser!
1A

&) Dane & Lacal intranet

Figure 24-3 Dialog box generated because of injected HTML data.

402

Part IV Security Assessment Case Studies

Here’s what happened: when you entered <script>alert(‘XSS — Evil
Script Running on Your Browser!);</script>, the page returned the output
“Hello, <script>alert(‘XSS — Evil Script Running on Your Browser!");</script>".
However, instead of producing that message, your browser executed the script
tag and generated that dialog box. There you have it: script executed by the
browser of the client that is viewing Web content. Attackers won’t be so nice
and use a message like the one used in this example. They will combine this
ability to execute scripts with other vulnerabilities to steal sensitive data and
execute commands on user systems.

One final piece is needed to turn this into a full-fledged XSS attack—Iuring
the user to visit a website where such an attack is possible, as shown in Fig-
ure 24-4. As you learned in Chapter 23, “Attackers Using Non-Network Methods
to Gain Access,” the attacker can use a variety of social engineering attacks to get
a user to visit a malicious URL. Or perhaps the attacker will use an e-mail-based
attack (discussed in Chapter 25, “E-Mail Threats”), in which he generates mali-
cious HTML e-mails or conducts phishing attacks whereby he disguises in e-mail
a malicious website for a trusted one.

®) User follows URL link.

Attacker User

XSS vulnerable

@ Attacker tricks User into website

following a malicious URL

that will cause an XSS attack. @ Web response from XSS
vulnerable website triggers
an XSS attack on the User’s browser.

Figure 24-4 An attacker luring a user to an XSS-vulnerable website.

Finding XSS Vectors

This book is, of course, about penetration testing, so let’s take a look at differ-
ent methods of finding XSS vectors on your organization’s website. This process
basically amounts to:

1. Finding all the sources of input for that Web application and deter-
mining whether that input is being used as part of the dynamically
generated Web output

2. Ifthat input is being used as part of output for dynamically generated
Web content, determining whether that input is being properly vali-
dated or encoded

Chapter 24 Web Threats 403

If you have experience reviewing code, you can review the source pages
or code of your organization’s website and applications. Table 24-1 lists com-
mon Web input sources to look out for and provides examples. The information
in this table by no means is a complete list.

Table 24-1 Common Input Sources for XSS Attacks

Input source Examples

Form fields Response. Write(Request. Form(“ElementName”));

Query strings Response. Write(Request.QueryString(“VariableName”));

Server request headers Response. Write(Request.ServerVariables(“ServerVariable”));

Session variables Response. Write(Session(“Variable™));

Application variables Response. Write(Application(“Variable”));

Cookie data Response. Write(Request.Cookies(“CookieName”).
Values(“ValueName”));

Data sources SQL Server and ODBC connections

HTML tags with <applet>, <body>, <embed>, <frame>, <script>,

embeddable script <frameset>, <html>, <iframe>, , <style>, <layer>,

<ilayer>, <meta>, <object>, <table>, <body>, <bgsound>,
<p>, <link>, <input>, <div>

If the input source you identify is in any way used to generate output such
as a Web response or an error page, you need to verify that one or more of the
application-level countermeasures discussed in the next section have been
applied. If they have not, that input source has strong potential to be an XSS
attack vector.

If you don’t have code-reviewing experience, you can alternatively try to
enter HTML data such as <script>alert(‘XSS’);</script> into various Web
input fields and sources on your organization’s website to see whether the
response generated causes a dialog box with the message “XSS” to appear.

Countermeasures
For an attacker to successfully carry out an XSS attack, he needs to:

B Inject HTML data into Web content
B Trick the user into visiting the XSS vulnerable website

B Cause that injected HTML data to execute on that user’s browser

If you take away the attacker’s ability to perform any one of these steps,
you can effectively mitigate the threat of XSS attacks against your organization’s

404 Part IV Security Assessment Case Studies

users and websites. Here are some good countermeasures to use at the Web
application level:

B Educate developers Educate developers about the threat of XSS
attacks. In particular, tell them to sanitize and validate all input that could
potentially be used as part of dynamically generated Web responses.

B Encode output One way to sanitize HTML output and prevent cli-
ent browsers from treating HTML as executable output is to encode it.
You can do this with the .NET Framework by encoding HTML output
with the System. Web.HtipUtility. HtmlEncode method. Encode URLs
with the System. Web.HttpUtility. UrlEncode method. The third example
provided in the XSSExample site demonstrates how encoding output
can be used to defeat XSS attempts (Figure 24-5).

A Cross-Site Scripting Bample #3 - Microsoft Internet Explorer

File Edt YView Favorites Tools Help &

Qe - @ ¥ @ &) search ¢ Favorites @ meda) -z = E Q3

Address | hbtpifTestStefthres.aspx vIBe ks *

Cross-Site Scripting Example #3

Hello, <script>alert{'%SS - Evil Soript Running On Your Browser!'); </seripts |
<script>alert(WSS - Bvil

& Done &J Lacal intranet

Figure 24-5 Defeating XSS attacks with encoding.

B Use the ASP.NET validateRequest attribute By default, ASP.NET
validates input against a potentially malicious script that could create
an XSS attack. You can control this validation behavior by setting
the validateRequest attribute to true (default) or false in the
Machine.config file. Check to make sure your organization’s websites
are protected by this feature. Figure 24-6 shows how using validate-
Request can defeat an XSS attack.

B Use the innerText property instead of innerHTML Verify that
when you are generating dynamic Web content, you are doing so with
the innerText property, which renders content safe and unexecutable,
instead of the innerHTML.

Chapter 24 Web Threats 405

2 Runtime Error - Microsoft Internet Explorer

File Edt Yew Favortes Tools Help o
Qﬁack - Iﬂ IELI 0| S)seatch ¢ Favories (@ Medls (%) - & E ij 3
fddress | http:{TestSitejone, aspx v|Beo ks

~

Server Error in '/xss' Application.

Runtime Error

Description: An application error occurred on the server. The currert custom error seftings for this application prevent the details of the application
errar from being viewed remotely (for security reasons). It could, however, be viewed by browsers running on the local server machine

Details: To enable the details of this specific error message to be viewshle on remate machines, please create a <customErrars= tag within a

“weh.config" configursation file located in the root directory of the current weh application. This =customErrors= tag should then have its "mode” attribute
setto "Off".

<1-- Web.Config Configuration File --»

<configurations
asystem.webs
<customErrors mode="0ff" />
</system.web>
</configuration:

Notes: The current error page you are seeing can be replaced by a custom error page by modifying the "defaultRediect” attribute of the application's
=customErrors> confiouration taa to poirt to a custom error page URL.

&) Dane

& Local intranet

Figure 24-6 Defeating XSS attacks with ASPNET validateRequest
attribute.

You can use the following client-level countermeasures to protect users
from XSS attacks:

B Educate users The attacker can inject all the HTML data she wants,
but none of that will matter if there isn’t a user browser to execute that
data. That said, educate users about the threat of XSS attacks and tell
them to view Web content only from sources they trust.

B Implementbrowser security In the browser, disable the use of Java-
Script or Active Scripting for untrusted zones such as the Internet zone.

Unpatched Web Browser Attacks

Web browsers can also be targets of attack, and why wouldn’t they be? When you
think about it, all a Web browser really does is parse input from external, potentially
untrusted sources, making the likelihood for exploitation very high. Attackers could
modify Web responses with man-in-the-middle (MITM) attacks (see Chapter 21,
“Session Hijacking”) or lure users to URLs where they can exploit weaknesses in
things like ActiveX controls. As revealed in bulletins such as MS04-004 (btip:
/www.microsoft.comy/technet/security/bulletin/MS04-004.mspx), attacks against Web
browsers can lead to additional threats such as spoofing and remote code execution.

Unpatched Web browsers can be leveraged in other attacks such as those
launched over e-mail and those initiated through social engineering. During your
penetration tests, you should not only look at the current patch levels of user sys-
tems, you should determine whether your organization’s policy on patching desktop

406 Part IV Security Assessment Case Studies

software like Web browsers meets security requirements. Also, look at how this pol-
icy is enforced. Are patches automatically pushed on to user desktops, or are users
required to install patches themselves (which thus far has been a losing proposition)?

For more information about attacks using e-mail, see
Chapter 25, “E-Mail Threats.” For information about how attackers use
social engineering to launch attacks, see Chapter 23, “Attackers Using
Non-Network Methods to Gain Access.”

Countermeasures
Nice and simple—patch your Web browsers!

Server-Level Threats

In the late 1990s, rarely could you visit a technology news site without being
inundated with stories about how this company and that company had their
Web pages modified (commonly referred to as defaced). These days, other than
the fact that these types of stories are hardly newsworthy anymore, very little
has changed—Web servers are still constantly barraged from both internal and
external sources. Some reasons for this could be the following:

B Web servers are much easier to reach than other servers Web
servers are often connected directly to the Internet and don’t have
the luxury of the perimeter firewall for additional protection.

B The targets are numerous The sheer number of Web servers
with which attackers can play outnumbers any other type of server,
such as databases and remote access servers.

B Web servers are often easier to attack Attacks against Web serv-
ers are usually done remotely and, a majority of the time, without
requiring authentication (that is, they require less skilD).

B Attackers seek notoriety Attackers looking for a way to gain
respect, leave their mark, and showcase their skill level will try to
compromise high-profile sites.

Chapter 4, “Conducting a Penetration Test,” explores
in more detail the motivations of attackers.

Repudiation

Compromising websites creates public embarrassment and
financial loss When websites are compromised, a loss in con-
sumer confidence typically follows, which leads to a loss in profit.
This motivation is very popular among disgruntled ex-employees.

Now let’s take a look at the following common Web server threats:

Repudiation
Information disclosure
Elevation of privileges

Denial of service

Chapter 24 Web Threats

407

If your Web server gets compromised or attacked by a denial of service (DoS)
attack, you want to determine how the attacker intruded. You need, at a mini-
mum, logs of all activity that has occurred on your organization’s Web servers
leading up to the moment after the compromise. You also need ways to verify
that logging is indeed working.
Logging is enabled on IIS support websites by default. To verify that it is
enabled, follow these steps:

1.

Open the Internet Information Services (IIS) Manager.
Open the Properties page of the website you want to enable logging on.

On the Web Site tab, verify that Enable Logging is selected, as shown

in Figure 24-7.

Default Web Site Properties 2]

Documents | Directory Securty | HTTPHeaders | CustomErrors |

webSte | pefomence | ISAFIFiters | Home Directory

[Web site identification

Desription:

ICP port: a0 ssL port:

1P address: [t Unsssigned) | advanced...

~ Connections

Copneckion timeout: 120 seconds

[Enable HTTP keep-alives

¥ Enable logging

Active log format:

[wac Extended Lag File Format | Propetties...

= e

Figure 24-7 Enabling logging on IIS.

408

Part IV Security Assessment Case Studies

Verifying that logging is enabled on your organization’s Web servers is very
important. You don’t want to find out after an intrusion that logging was not enabled
and that you or your organization’s forensics teams have no Web server logs to work
with. To verify that logging is enabled for a Web browser, follow these steps:

1. Access your organization’s website and request a resource. The
resource doesn’t have to be valid, but make sure that it’s unique and
will be easy to spot when you examine the logs later—for example,
bttp.//TestSite/TestHome/IAmTesting ToSeelfLoggingIsEnabled.html.

2. Asshown in Figure 24-8, open your Web server’s Web logs and make
sure that your request was logged. In our example, you would make
sure that the request for IAmTestingToSeelfLogginglsEnabled.html
was recorded.

/3 The page cannot be found - Microsoft Internet Explorer B =] 5

File Edt Yew Favortes Tooks Help | &
(Back ~) - (¥ (2] |) Search - Favortes @8 Meda &4 - . (3
Addvess [] hrp: i Testsite TestHome TamTestingToSeeILogginglsEnabled. him = B |Links »

>
The page cannot be found Ai
lolxi

Tht File Edit Format View Help

s tfesoftyare: Microsoft Internet Information services 6.0 -]
7 |#wersion: 1.0

#Date: 2003-12-08 04:25:09

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-i
2003-12-08 04:25:09 127.0.0.1 GET /TestHome test.asp - 80 - 127.0.0.1 mozillas4.C
#software: Microsoft Internet Information Serwvices &.0

#version: 1.0

#Date: 2003-12-08 04:28:21

#rields: date time s-ip cs-method cs-uri-stem cs-uri-guery s-port cs-username c-1
2003-12-08 04:28:21 127.0.0.1 GET fTestHomes/test.asp - 80 - 127.0.0.1 mozillass.(
2003-12-08 04:29:22 127.0.0.1 GET /TestHome/test.asp - 80 - 127.0.0.1 mozillas4.C
#software: Microsoft Internet Information Serwvices &.0

#version: 1.0

@j #Date: 2003-12-08 11:

21
#rields: date time cs—method cs-uri-stem cs-ur port cs-username
20

1
20 1] 0.1 GET /fTestHome/IamTest SeelfloggingIsEnabied. htn
< | H i

Figure 24-8 Verifying that logging is enabled for a Web browser.

Fle

Remember that the more detailed your logs are, the more useful they will
be when you analyze past or current attacks. Both IIS and other Web servers
like Apache allow administrators to configure which information gets logged,
such as the user name of the user accessing the website and cookie informa-
tion. Recording the user name, for example, is particularly useful when you
have user authentication enabled on your Web servers.

As you learned in Chapter 22, “How Attackers Avoid
Detection,” attackers also target log files. Refer to this chapter for more
details about threats to log files and the countermeasures you can use
to mitigate these threats.

Chapter 24 Web Threats 409

Information Disclosure

Attacking and exploiting a system is mostly about connecting the right dots to find
the correct weakness or series of weaknesses. The more information attackers
have about your organization’s systems, the more likely they will find these dots
and connect them. Information such as Web server type and versions, for instance,
can tip attackers off as to what family of attacks they should try and which ones
they do not have to bother with. Let’s see how you can limit the amount of infor-
mation an attacker can take from your organization’s Web servers and how you
can verify that defenses are indeed working. In this section, you’ll be looking at
the following common sources of Web server information leaks:

B Server header exposure

B Directory browsing

Server Header Exposure

Each time a user requests a resource from a Web server, such as an HTML file,
an image, or a sound clip, a set of headers and values is returned along with the
actual resource. One such header is the Server header, which indicates the Web
server’s version and sometimes the operating system the server is running on.
Look at the following Web server response:

HTTP/1.1 404 Object Not Found

Server: Microsoft-I11IS/5.0

Date: Mon, 24 Nov 2003 06:31:25 GMT

Content-Type: text/html

Content-Length: 111

<html1><head><title>Site Not Found</title></head>

<body>No web site is configured at this address.</body></html>

The Server header in the second line of the response suggests that the
Web server that generated this response is an IIS 5.0 server. If it were an Apache
Web server, this header might have a value like Apache/2.0.48 (Win32). If you
are the attacker, having this value makes your job immediately easier because
you now know which types of attacks to try; when you know the server you are
attacking is an IIS 5.0 server, you won't bother trying attacks specific to Apache
servers or even other version of IIS such as 4.0 or 6.0.

Countermeasures You can easily prevent the Server header from being exposed
in the responses generated by an IIS server by using the URLScan RemoveServer-
Header option. Here’s how:

1. Open the URLScan.ini configuration file for URLScan by using a text
editor.

2. In the Options section, set RemoveServerHeader to 1.

410 Part IV Security Assessment Case Studies

[options]

RemoveServerHeader=1

3. Apply the URLScan settings, and restart IIS.

If your organization prefers not to remove the Server header from
the Web responses, you could alternatively change the header value that
is returned to something that does not give away the server’s type and
version. For example, if you wanted the Server header to report the value
Commodore VIC-20, you could set the URLScan AlternateServerName
option to the following:

AlternateServerName=Commodore VIC-20

Removing the Server header from your organization’s Web server responses
does not eliminate all possible ways an attacker can determine type and version
information. There are several other ways of gaining this type of information from a
Web server; however, you have eliminated a very common method of doing this.
Several tools and popular services that attackers use, such as automated vulnerabil-
ity scanners and NetCraft Ltd.’s Webserver Search (bttp.//www.netcraft.com) tool,
depend on this header being present when they are fingerprinting Web servers.
When it isn’t, they don’t work very well or at all, so you've definitely still made gains.

To verify that the Server header is removed from Web responses, follow
these steps:

1. Telnet to your Web server’s listening port, which in most cases will
be TCP port 80. The command to do this is telnet.exe TestSite 80.

2. Request any resource from the server by typing a command such as
HEAD / HTTP/1.0 and then pressing Enter twice.

3. Review the response from the server, such as the one shown in Fig-
ure 24-9, and verify that the Server header does not appear anywhere
in the response or does not indicate the Web server’s type and version.

A C# program named CheckWebServer-
Header.exe (along with the source code) is included on the
companion CD. This tool automates the verification process
described in the proceeding steps. It also has the benefit of
working with most Web servers running Secure Socket Layers
(SSL), whereas the preceding steps do not.

AWINDOWS\system32\cmd. exe
C:~\>Telnet.exe TestSite BA
HEAD ~ HTTP-1.8

HTTP/1.1 288 OK
Content-Length: 1433
Content-Type: text/html
Content ion: http:,/s127.08.8.1/iisstart. htm
at. 22 Feb 2883 B82:48:30 GMT
nges: hytes
Bd3adelicdac21:384"
a on. 24 Nouv 2883 B8%:48:33 GHT
Connection: close

Connection to host lost.

C:N>

Chapter 24 Web Threats 411

Figure 24-9 URLScan filtering the Server header from Web server responses.

Directory Browsing

Directory browsing is a feature found on almost every type of Web server. When
no default document such as Default.htm is found, this feature allows visiting
users to view a server-generated list of the contents on a website or in a virtual
directory. Essentially, the Web server is saying to the user, “I couldn’t find a default
document to load, but here’s what I do have. Please pick.” Figure 24-10 shows an
example of directory browsing enabled on the virtual directory TestHome.

i testsite - /TestHome/ - Micrasoft Internet Explorer

File Edt Wew Favorites Tools Hslp

=10lx|

,
L

QBack +) - ﬂﬂ | search

Favorites @ Media 4

=]

Address |2j http:jjtestsite/ TestHome,

B [k >

testsite - /TestHome/

[To Parent Directory]
Konday, June 30, 2003 4:38 PN
Friday, Novewber 21, 2003 11:47 PX
Friday, Novewber 21, 2003 11:43 PI
Thursday, August 23, 2001 4:00 AN

109056 EmployeeInfo.xls
<dir> images

24 index.html

14710 passwords.txt

‘&] Dane

[[meermet

|
4

Figure 24-10 Directory browsing enabled on the TestHome directory.

Like any product feature, this one has the potential to be abused. For exam-
ple, if your organization stored on your website or in a virtual directory sensitive
files such as user names and passwords, directory browsing would give attackers
almost immediate access to these files. Even if this sensitive data was stored in files
with difficult-to-guess names such as NHccbxATA1PLARO_uMmPZCV7c.txt, direc-

tory browsing could be used to easily access it.

412 Part IV Security Assessment Case Studies

Countermeasures Disabling directory browsing on 1IS is straightforward. By
default, websites and virtual directories on IIS are not able to be browsed. To
manually disable directory browsing, use the following steps:

1. Open the Internet Information Services (IIS) Manager.

2. Open the Properties page of the website or directory you want to
disable directory browsing on.

3. On the Directory tab (Figure 24-11), verify that Directory Browsing is
not selected, and then click Apply to apply the settings.

TestHome Properties ﬂﬂ

Directory |D0cuments I Directory Security I HTTF Headers I Custom Errars I
The content For this resource should come from:
' The designated directory
€ 5 share located on anobher computer
& redirection ko a LRL

Local path: I | TestHome

r Scripk source access v Log wisits
¥ Index this resource

Application settings

Application name: I Default Application Create |
Starting point: <Default Web Site =
J Configuration; .. |
-

Execute permissions: IScripts only

Application pool; IDeFauItAppPooI j Unlazd |

OF I Cancel | Apply | Help |

Figure 24-11 Configuring IIS to prohibit directory browsing.

Now that you've gone through the process of disabling directory browsing
on your Web server, your next step is to verify that it is indeed disabled. This ver-
ification test applies to all Web servers, not just to IIS. Follow these easy steps:

1. Using a Web browser, load the website or virtual directory you just pro-
tected. In our example, directory browsing of the TestHome directory
was disabled, so you would navigate to the hitp.//TestSite/TestHome
directory.

2. Examine the response from the server. If directory browsing is correctly
disabled, either you get a message indicating that directory browsing is
not allowed (Figure 24-12) or you get some other error message.

Chapter 24 Web Threats 413

S
Fle Edt Wew Favorites Tools Hslp ‘ o
QBack - () - X 2 0] O search Tt Favorites @ reda @) | [0+ L 3

Address [(&] hitpi/peestsite TestHome/ E=E |Lm >

Directory Listing Denied

This Virtual Directory does not allew contents to be listed.

|
4

2] Dene [[meermet

Figure 24-12 Directory browsing being denied by the Web server.

Elevation of Privileges

Elevation of privileges threats on a Web server can be caused in myriad ways:
implementation, configuration, missing patches—you name it. Covering all the
known causes is outside the scope of a single chapter, so this section examines
the threat of elevation of privileges caused by the following common sources:

B Unpatched Web servers
[| Unknown vulnerabilities
[| Nonessential services

[| Canonicalization attacks

Missing Patches

Like swimming in the ocean with a bucket of chum, deploying a Web server
with missing patches is a very bad idea. There are generally no ifs, ands, or buts
about this. If your car manufacturer recommended that you use at least five
bolts to secure your wheels, why would you ever want to use any fewer? Web
servers are typically deployed in some of the most hostile environments, so
unless you have a very strong business reason for not doing so and your orga-
nization is willing to assume that risk, your Web servers need to be sufficiently
patched.

414

Part IV Security Assessment Case Studies

Countermeasures There are two key countermeasures against the threat posed
by missing patches on your organization’s Web server. The first is to use devices
such as application firewalls, network firewalls, or intrusion prevention systems
(IPS) to sanitize malicious network traffic or block it from reaching those Web
servers. This countermeasure, however, is not recommended as the only one
you use. Your Web servers are still vulnerable until those missing patches are
applied; if the attacker is able to find another route to your organization’s Web
servers or cause one of these protective devices to fail, your Web servers are
easy pickings.

The second countermeasure is to simply apply those missing patches. If
your organization is using IIS, the easiest way to detect missing patches for your
organization’s Web server is to use automated tools like Microsoft Baseline
Security Analyzer (MBSA), shown in Figure 24-13. For other vendors, you’ll
have to compare the Web server’s patch level against a current patch list pro-
vided by your vendor.

& Microsoft Baseline Security Analyzer

B Ezscline Security Analyzer

Microsoft Baseline Security Analyzer Pick a computer to scan

Specify the computer you want b scan. You can enter either the computer nams of its IP
address.

[wielcome
[Pick a computer to scan

[Pick multiple computers ko scan

Computer name: |workaroupititan (this computer) ~|

e [

Security report name: [s%domain®s - computerhiame s (Shdatews) |

[Pick a security report to view

[view a security report

See Also
Options: [check for Windows vulnerabiiities
[check for weak passwords
Check for 115 wulnerabilities
[check for 5QL vulnerabilities
[check for sgrurity updates
Use SUS Server:

[Microsoft Baseline Security Analyzer
Help

[About Microsoft Baseline Security
Analyzer

[Microsoft Security Web site

Learn more about Scanning Options

B startscan

Corporation, Shavlik Technalogies, LLC. All rights reserved.

Figure 24-13 Using MBSA to scan for missing IIS patches.

Important Not only does the Web server need to be up-to-date on
patches—the operating system on which the Web server runs must
also be well patched. If you are using Windows as the operating sys-
tem on which your Web server runs, MBSA can also be used to detect
missing operating system patches.

Chapter 24 Web Threats

415

Once you determine what the latest appropriate patches are and apply
them, you need a way to verify that those patches are indeed properly installed.
You can do this in several ways:

Manual verification You can review the list of patches installed
on a system. On the Windows operating system, one way to review
the list of currently installed programs is to click Control Panel, Add
Or Remove Programs, and Change Or Remove Programs; and then
review the list of installed patches under the Currently Installed Pro-
grams section. Another way is to review the file versions of the
affected files addressed by the patch.

For example, in a recent security bulletin for MS03-051 (http:
//www.microsoft.comy/technet/security/bulletin/MS03-051.mspx) that
addressed a buffer overrun in Microsoft FrontPage Server Extensions,
file version information about the fixed DLL file was included so that
customers could verify that the patched file was installed. In the case
of this particular bulletin, customers could verify that the installed file
Fp4awel.dll was version 4.0.2.7802.

To manually determine a file’s version, simply open the
properties page of the file. The file version information (if avail-
able) is listed on the Version tab.

A utility written in C# named GetFileVer.exe (with
source code) is included on the companion CD. It automates
the process of determining a file’s version.

Verification with automated security assessment tools Using
the same tools you used to initially detect missing patches on your
Web server, such as MBSA or Nessus (btip.//www.nessus.org), is a
great way to verify that those patches are installed. In fact, any time
you make an update to your Web server, it's a good idea to rescan
the server to make sure you did not introduce any new vulnerabili-
ties or miss any patches you weren’t aware of.

416

Part IV Security Assessment Case Studies

B Verification with exploit code There’s a saying that goes some-
thing like “there’s nothing like the real thing,” and understandably, if
you're testing your defenses against attackers, you want to be using
the same techniques and tools they use. Although doing this does
help verify the correctness of patches to some degree, these tools
could be created by potentially untrustworthy sources. Do you really
know exactly what the code is doing? Are you absolutely sure that
it’s not doing something malicious in the background aside from
what it’s reporting to be doing, such as installing a rootkit on your
machines? Even with source code, deciphering exactly what an
exploit is doing is often difficult, such as in the case of buffer over-
runs with messy shell code. Unless you are 110 percent sure of
exactly what the code is doing, avoiding this method is often best. If
your organization still prefers to use this method for patch verifica-
tion, thoroughly test the exploit code against test machines in an iso-
lated environment before directing that code at production servers.

Unknown Vulnerabilities

Patching systems buys you protection against known attacks; however, you also
need to worry about unknown vulnerabilities or vulnerabilities not publicly dis-
closed, which are called zero-day vuinerabilities. Unknown buffer overruns (see
Chapter 17, “Application Attacks”) are particularly concerning when it comes to
Web servers. They are the focus of this section, because the attacks are executed
remotely with high damage potential and often without requiring authentication.
If you're lucky, a buffer overrun against your organization’s Web page simply
creates a DoS condition, making the page unavailable for a period of time.
(Either the server recovers by itself or the administrator has to restart it.) If you're
unlucky, which is more likely, the attacker can use buffer overruns to inject arbi-
trary code onto your Web server and potentially gain further access to your orga-
nization’s networks.

Countermeasures Because the attacks just discussed are not publicly known,
they are not easily detected. You could conduct your own research or use auto-
mated tools such as protocol fuzzers, but these alternatives can be time con-
suming, and you might or might not discover something new. You can,
however, take several precautions to help mitigate or eliminate the threat of
unknown buffer overruns on your Web server without knowing the exact vul-
nerability ahead of time:

B Disable unused services Disabling unused services reduces the
number of available services that attackers can exploit using buffer
overruns.

Chapter 24 Web Threats 417

B Validate input Web applications running on the Web server
should perform input validation for type and length on all data
received.

Design considerations that address input valida-
tion are discussed in detail in books such as Writing Secure
Code, Second Edition (Microsoft Press, 2003), by Michael
Howard and David LeBlanc; and Building Secure Software: How
to Avoid Security Problems the Right Way (Addison-Wesley,
2001), by John Viega and Gary McGraw.

B Use application filters To help reduce the threat of buffer over-
runs against your Web service, you can use filters such as URLScan,
or use application firewalls to limit the size of HTTP requests sent by
users—and attackers. (In this section, you will learn how to use var-
ious URLScan options to protect your organization’s Web servers as
well as how to verify that these options are well-configured.)

If you are not using IS, you can still achieve similar URLScan
buffer overrun protection using third-party application firewalls.

Mitigating Buffer Overruns with URLScan URLScan provides IIS administrators
with several options to help protect Web servers against buffer overrun attacks:

B MaxURL

B MaxQuerySiring

B “Max-” header prefix

B MaxAllowedContentLength

MaxUrl The MaxUrl option limits the length of Web request URLs. By default,

the restricted length is 260 bytes, but you can set this length by adjusting the
MaxUrl value under the RequestLimits section in the URLScan.ini file:

[RequestLimits]

MaxUr1=260 ; Customize this value to your needs

418

Part IV Security Assessment Case Studies

To verify this option, you can simply make a Web request to
your protected Web servers using a URL that exceeds the number of
bytes defined by this option. For example, if MaxUrl is set to 700, a
Web request for http.//TestSite/[Ax800] will be blocked by URLScan.
This example and several others use notation such as [AxSomeNum-
ber]. This is a short form representing the letter A repeated several
times. In our example, [Ax800] would be expanded to the letter A
repeated 800 times.

A URLScan log entry like the following would be recorded:

[12-08-03 - 15:28:53] Client at 192.168.1.101: URL length exceeded
maximum allowed. Request will be rejected. Site Instance='l",
Raw URL='/[Ax8001]"

MaxQueryString The MaxQueryString option is used to limit the length of Web
request query strings. The guery string is the portion of the request that follows the
question mark character (?) and is used to pass parameters to the handling Web
applications. For instance, in a request such as bttp.//TestSite/myapp.asp?name
=Microsoft, name=Microsoft represents the query string. This option has a default
value of 2048 bytes, but you can set this value by adjusting the MaxQueryString
value under the RequestLimits section in the URLScan.ini file:

[RequestLimits]

MaxQueryString=2048 ; Customize this value to your needs

After you apply the change, you can verify this value easily. Just make a
Web request to your organization’s Web servers by using a query string that is
larger than the allowed length, as done in the following code:

http://TestSite/index.html1?foo=[Ax3000]

Any request with a query string greater than the value set for the MaxQue-
ryString option will result in a server “404 - File Not Found” error message as
well as a URLScan log entry that specifies something like this:

[12-08-03 - 15:28:53] Client at 192.168.1.101: Query string Tength exceeded
maximum allowed. Request will be rejected. Site Instance=1, QueryString=
name=[Ax3000], Raw URL=/index.html

“Max-" Header Prefix URLScan allows you to restrict the lengths of certain
headers by using the “Max-" prefix. For example, say you want to restrict the

Chapter 24 Web Threats 419

header CustomHeader to 10 bytes. You do this by adding the following entry
into the RequestLimits section of the URLScan.ini file:

[RequestLimits]

Max-CustomHeader=20 ; Adjust this value as needed

URLScan blocks any request containing the header “CustomHeader”
whose length exceeds 20 bytes. To verify this option, you can try the following:

1. Telnet to your protected Web server; for example, type Telnet
TestSite 80. (This should be port 80 in most cases.)

2. Type a generic request such as GET / HTTP/1.0 and press Enter
once.

3. Type CustomHeader: [Ax30] so that the “CustomHeader” header
exceeds the length specified in your URLScan.ini file.

4. Press Enter twice. The server responds with an error message, and a
URLScan log entry like the following is generated:

[12-08-03 - 15:28:53] Client at 192.168.1.101: Header CustomHeader:
exceeded 20 bytes. Request will be rejected. Site Instance=1, Raw URL=/

MaxAllowedContentLength URLScan provides the MaxAllowedCon-
tentLength option, which restricts the maximum built-in value for the Content-
Length header. By default, MaxAllowedContentLength is 30000000, but you can
set it to your own value under the RequestLimits section:

[RequestLimits]

MaxAllowedContentLength=5000 ; Adjust this value as needed

This option does not prevent more data than its value specifies
when the transfer being used in the Web request is a chunked-transfer.

Veritying the MaxAllowedContentLength option is similar to conducting
the “Max-" header prefix test except that you specify the Content-Length header
to some value greater than the value you set in the URLScan.ini file. Your Web
server should reject your request and log an entry into the URLScan log file that
is similar to the following:

[12-08-03 - 15:28:53] Client at 192.168.1.101: Content-Length 40000000 exceeded
maximum allowed. Request will be rejected. Site Instance=1, Raw URL=/

420

Part IV Security Assessment Case Studies

Nonessential Services

One of the best defenses against all attacks, known or otherwise, is to reduce
the number of available services attackers can leverage. For example, if your
organization needs to serve up only static HTML Web pages, there is no reason
for your Web servers to have services like ASP or PHP: Hypertext Preprocessor
(PHP) enabled, right? It’s as simple as this: if you reduce the attacker surface
area that an attacker can work with, such as disabling nonessential services, the
attacker has nothing to exploit.

Two common types of nonessential services that an attacker might try to
exploit when attempting to compromise a Web server are those provided by the
operating system and those provided by the Web server itself. Let’s take a look
at these threats and some good countermeasures.

Not only are there security benefits for disabling nonessential
services, there are also performance and reliability benefits. The fewer
services your systems need to support, the faster these systems run,
and the number of possible failure points is reduced.

Operating System Services FEach operating system will enable different services
by default. For example, Windows XP by default enables the Messenger and Print
Spooler services. On some UNIX systems, services like the Time and the Secure
Shell (SSH) daemon might be enabled by default. If these services aren’t explicitly
needed by your organization, they most likely will not be configured properly,
patched, or running in a secure state—making them the perfect target for attack-
ers. And because these services are nonessential, they are also most likely not
used, and attacks against them will probably go unnoticed by IT staff and users.
If your organization’s Web server is running on the Windows operating
system, you can easily enumerate all the operating system services with the fol-
lowing Sc.exe command:
C:\>sc.exe \\<ServerName> queryex | findstr "SERVICE_NAME"

SERVICE_NAME: ALG
SERVICE_NAME: Browser

SERVICE_NAME: winmgmt

Replace <ServerName> with the host name or the IP address of your organiza-
tion’s Web server. The output you see indicates all the Windows services that
are currently running on the Web server.

Countermeasures Any operating service that your organization does not
require but is running on its Web servers should be disabled immediately. If

Chapter 24 Web Threats 421

you are using Windows, you can disable that service by stopping it and setting
its startup type to Disabled on the service property page. For other operating
systems, refer to their user guides regarding how to disable services. You can
also use the Sc.exe command to stop and disable a Windows service:

1. To stop a service, run sc.exe \\<ServerName> stop <ServiceName>.
Replace <ServerName> with the server you want to configure, and <Service-
Name> with the name of the service you want to stop. For example:

C:\>sc.exe \\WebServer stop Messenger

2. To disable that service from automatically starting when the operat-
ing system boots up, run sc.exe \\<ServerName> config <Service-
Name> start= disabled. For example:

C:\>sc.exe \\WebServer config Messenger start= disabled

There is a space between “start=" and “disabled” when using
the Sc.exe config option.

Web Server Services Not only should you disable nonessential services pro-
vided by the operating system that the Web server is running on, you should
also disable such services provided by the Web server itself. These likely will
also be targets of attack.

The process for detecting the Web services provided by your Web server will
vary depending on which vendor your organization uses; however, generally you
can determine this by inspecting the Web server’s configuration file or using the
Administration console. By default, IIS 6.0 comes with everything enabled except
a limited number of Web service extensions such as Active Server Pages.

Countermeasures To mitigate the threat of nonessential Web services on IIS,
you will need to do the following:

1. Open the Internet Information Services (IIS) Manager.

2. View the Web Service Extensions folder, shown in Figure 24-14.

3. Prohibit any extensions not required by your organization.

If you require some level of granularity, for instance, you want
to allow only the .asp or .aspx extensions and not .asa, .cdx, or
.ashx, continue with the following steps and remove the application
extension mappings.

4. Open the Internet Information Services (IIS) Manager again.

Open the Properties page of the website you are protecting.

422 Part IV Security Assessment Case Studies

O computer Management -8 x
N View Window Help ‘ == x|

EEEEIEIEE
E Computer Managemsnt (Local)

I8 Web Service Extensions

=i, Svstem Tools

Event Viewer /| Web Service Extension | status |

% fha'ﬁj F°'dersd a 7 all Unknown ISAPT Extensions Prohibited

ocal Users and Groups

= P Allow Al Unknown C61 Extensions Prohibited
§| Performance Logs and Alerts [actioe erver ages i

2B Device Manager Erafibit -

P

i Storags

i Removable Storage _ Properties | [®] Server Side Includes Prohibite:
Disk Defragmenter 5] webpav Prohibited
Disk Management Tasks
128 Services and Applications
& Telephony
g Microsaft 5QL Servers 11 dd a new Web service extension...
Services
WML Cantrol 11 allow all web service extensions for @
BB Indexing Service specific applieation...

=% Internet Information Services (TI5) Manager
) Application Pools
) Web Sites
) Web Service Extensions

& proibit sll Web service extensions

@ Open Help

Extended A Standard /

Figure 24-14 IS Web Service Extensions folder.
6. On the Home Directory tab, click Configuration.

7. On the Application Configuration page, click Remove for any appli-
cation extensions mappings your organization does not require, as
shown in Figure 24-15.

Application Configuration: ﬂ
Mappings |Opti0ns | Debugging |

V¥ Cache ISAPI extensions

r—Application extensions

Extens... | Executable Path | ‘erbs -

D WINDOW S system32iinetsrviasp.dl - GET,HEA..

D VWINDOW S system32iinetsrviasp.dl - GET,HEA. .

L '\ e 1l GET,HEA, |

DWINDOW S system32iinetsrviasp.dl GET,HEA..

D AWINDOW S system32yinetsrvihttp, .. GET,POST
| »

Add... | Edit. .. Remove |

‘wildcard application maps {order of implementation):

Insert... |
Edit... |
Remove |

Move Up | Mave Down |

OF I Cancel | Help |

Figure 24-15 Removing IIS application extension mappings.

Chapter 24 Web Threats 423

You can further restrict the allowed extensions on an IIS server using URLScan:
1. Open the URLScan.ini configuration file for URLScan by using a text editor.

2. In the AllowExtensions section, list the extensions you want to allow
on your organization’s Web server. For instance, if you want to allow
htm, .html, and .jpg extensions only, your URLScan.ini file would
contain something like this:

[ATTowExtensions]
.htm

.html

-Jpg

3. Inthe DenyExtensions section, list the extensions you want to explic-
itly deny. For example, if you want to deny ASP requests, your
URLScan.ini file would contain something like this:

[DenyExtensions]
.asp
.cer

.cdx
.asa

4. Apply the URLScan settings, and restart your Web server.

As you've just seen, disabling unused services is pretty straightforward. Test-
ing to verify that a service is disabled is also very straightforward. To do this, you
need to verify that the service you just disabled does not respond to any further
service requests. For example, suppose you had a valid ASP document named
Test.asp at bttp.//TestSite/TestHome/test.asp. Once you disable the .asp extension,
any further requests for the file should result in an “HTTP 404 - File Not Found”
error message or some other error message, as shown in Figure 24-16.

RI=IEY

Fle Edt Wew Favortes Tools Help | e

Qeack - ()~ X 2 (b| Osearch T7Favortes B veda £ | (I B

Agdress| http:{TestSiks TestHomsjtest, asp | Go ‘Llnks @

Tea =0
fle Edt View Favorites Tods Help | I
@Back ~) - 6] 2] 0| D Search o Favorites @ Media £ | (0 L B
Adress | hitp [TestSite/TestHomeftest. asp = Be ‘Links »

The page cannot be found

The page you are looking for might have been removed, had its name changed, or
is temporarily unavailable.

Please try the following:

é Done

Make sure that the Web site address displayed in the address bar of your
brawser is spelled and formatted correctly.

If you reached this page by clicking a link, contact the Web site
administrator to alert them that the link is incarrectly formatted.

Click the Back buttan ta try another link.

2] Dene [[83 Cocal intranet
Figure 24-16 IS no longer providing an ASP service.

NIEN

424 Part IV Security Assessment Case Studies

Canonicalization Attacks

As you learned in Chapter 22, attackers try to mask their attacks as various other
but equivalent forms. The URL htip://TestSite/cmd%252eexe, for example, is
equivalent to http.//TestSite/cmd.exe because %252e double-decodes to the
period character (). If security decisions are made based on the non-canonical-
ized forms of input data (such as the former), attackers might be able to bypass
some of your security defenses (input validation, detection systems, and so on).
At that point, trouble is bound to follow.

Countermeasures If you are using IIS, you can use the VerifyNormalization
option of URLScan to detect and block many instances of these types of
attacks:

1. Open the URLScan.ini configuration file using a text editor.

2. In the Options section, set VerifyNormalization to a value of 1. (By
default, the value is set to 1.)

[options]

VerifyNormalization=1
3. Apply the changes and restart your Web server.

To verify that your defenses are detecting and blocking these types of
attacks, follow these steps:

1. Using a Web browser, navigate to your organization’s Web server. In
this example, we’ll use hitp.//TestSite.

2. Make a request for any document, valid or invalid, using a double-
encoded string. An example would be htip.//TestSite/index%252ehtml,
which, when normalized, resolves to hitp.//TestSite/index.html.

3. View your URLScan or application firewall logs and verify that your
attempts were detected and blocked. A log entry, such as the follow-
ing produced by URLScan, should be present:

Client at 192.168.1.100: URL normalization was not complete after
one pass. Request will be rejected. Site Instance='l', Raw URL=
'/index%252ehtml’

You can also verify that canonicalization attacks are being blocked by
using automated vulnerability scanners that contain signatures or logic for
canonicalization attacks.

Chapter 24 Web Threats 425

Denial of Service

Besides gaining elevated access or pilfering information, another way to attack
your organization’s Web servers is by disrupting their performance. This class of
attack is known as a denial of service (DoS) attack. During a DoS attack, attack-
ers try to disrupt the Web server and the applications and services that run on
top of it so that legitimate users are blocked entirely from accessing the site. Or
they degrade performance to the point at which the site becomes unusable. An
unavailable Web server, whether because of an attack or some other reason,
usually creates bad public relations and, even more likely, a significant loss in
profit because of lost online services.

See Chapter 16, “Denial of Service Attacks,” for more
details about DoS attacks.

Service-Level Threats

Web services provide a way for applications to interoperate across different
programming platforms and operating systems by using standard open proto-
cols such as the Simple Object Access Protocol (SOAP) or XML-RPC. Figure 24-17
illustrates this communication.

Organization A's
application understands
data in its own
proprietary format.

Organization B’s
application understands
data in flat

ASCI! file format.

SOAP Messages

Organization A Organization B
application application
(Web service client) (Web service server)

Figure 24-17 Web services allowing two disjointed applications to com-
municate over a common protocol.

Financial applications, for example, don’t have to understand the proto-
cols used internally by financial institutions, because they can take advantage of
Web services published by financial institutions to update user data such as
account balances and payment history.

426

Part IV Security Assessment Case Studies

Threats to Web services differ from service to service, but here are some
common threats that you should look for in your penetration tests (assuming
your organization provides a Web service):

B Unauthorized access
B Network sniffing

B Tampering
]

Information disclosure

Unauthorized Access

Unless your organization provides free public Web services, special care should
be taken to ensure that only authorized users are accessing these services. This
is even more important when your Web service handles sensitive information
such as credit card numbers and social security numbers. When you are testing
your organization’s Web service for unauthorized access threats, look for cre-
dentials being passed as clear-text in SOAP messages, use of weak authentica-
tion schemes, or worse yet, no authentication at all.

Countermeasures

Your organization should be protecting its Web services from unauthorized use
with mechanisms such as password digests, Kerberos tickets, or X.509 certifi-
cates in SOAP authentication headers.

Network Sniffing

Network sniffing refers to an attacker eavesdropping on communications
between hosts. Your organization’s Web service could be transmitting sensitive
data, so the communications of these services are prime targets for attackers.
Attackers might also try at a later time to reply to the communications they’'ve
captured. During your penetration tests, look for weaknesses such as transmit-
ting credentials clear-text in SOAP messages, failing to use transport security,
and not authenticating messages.

Chapter 19, “Network Sniffing,” provides a more detailed dis-
cussion about this threat.

Chapter 24 Web Threats 427

Countermeasures

In addition to the countermeasures to network sniffing threats discussed in
Chapter 19 are those provided by the Web Services Enhancements (WSE) for
the .NET Framework. More information about WSE can be found at bttp://msdn
.microsoft.com/webservices/building/wse/default.aspx.

Tampering

Even though messages are en route between your organization’s Web services
and clients, attackers might try to tamper with the data in those messages
through MITM attacks, for example. Look for Web service communications that
are not protected by transport security or by some authentication scheme.

Countermeasures

Digitally signing messages can provide recipients with confirmation that com-
munications have not been modified. Also, communicating over secure trans-
ports will greatly help in mitigating tampering threats.

Information Disclosure

Your organization’s Web service might expose extraneous information in error
messages that could aid an attacker in later attacks. Look for detailed exception
traces because of improperly handled exception data. Also, look for configura-
tion data about your organization’s Web service, such Web Service Description
Language (WSDL) files (static or dynamically generated), that might be exposed
to unauthorized users.

Countermeasures

Perform a code and design review of your organization’s Web service to ensure
that all exceptions are being caught, especially those that inherit from System
.Web.Services.Protocols.SoapException. Protect WSDL files with access control
lists (ACLs), and disable documentation protocols that dynamically generate this
data if these protocols are not required. Remember, only the minimal amount of
exception information should ever be returned to users. (See Chapter 8, “Infor-
mation Reconnaissance.”)

For more information about building secure Web services,
refer to http://msdn.microsoft.com/library/default.asp?url=/library/enus
/secmod/html/secmod85.asp.

428 Part IV Security Assessment Case Studies

Frequently Asked Questions

Q.

I already use protective applications like URLScan or some applica-
tion firewall to protect my Web servers. Does this mean I don’t have
to worry about patching or securely configuring my systems?

If only it were truly that easy. The answer unfortunately is no. Simply
relying on one protective layer and omitting another, such as patch-
ing your systems, is not a good idea. What happens when the appli-
cations you're using to protect your Web servers have vulnerabilities
themselves? As an example, consider the case of the two canonical-
ization bugs (bttp.//www.securityfocus.com/bid/2742) found in eEye
Digital Security’s application firewall, SecurellS, which can be used
to protect IIS installations. The answer to my question is that you're
in hot water. Always think defense-in-depth and layer those
defenses.

My organization doesn’t use IIS for our Web servers. What should I
do now?

The threats presented in this chapter apply to all Web servers
(Apache, TIS, and so on). IIS is used only to illustrate the material;
you can implement similar defenses against the threats discussed by
referring to your vendor’s product documentation. In addition to
other defense layers, you can use third-party protection software
such as Sanctum’s AppShield (hitp./www.sanctuminc.com) to fur-
ther protect Web servers, or use the ModSecurity module (h#tp.//www
.modsecurity.org) for Apache protection.

What's the number one countermeasure I should take from this
chapter?

That’s a no-brainer: patches, patches, patches!

My organization’s desktops do not use Internet Explorer for Web
browsing. Do I still need to cover XSS attacks in my penetration tests?

Yes! Even if you are using a different Web browser such as Safari,
Firefox, or Opera, you still need to be concerned with XSS attacks. In
fact, don’t just test Web servers; test any device that returns Web
responses. The Microsoft ISA Server HTTP error handler, for
instance, was found by Brett Moore of Security-Assessment.com to
be susceptible to XSS attack. (See http://www.microsoft.com/technet
/security/bulletin/MS03-028.mspx for more details.)

e

Chapter 24 Web Threats

Are there any additional tools to help me lock down my IIS servers?

Yes. The Microsoft IISLockDown tool (http://download.microsoft.com

/download/iis50/Utility/2. 1/NT45XP/EN-US/iislockd.exe) automates sev-
eral of the TIS countermeasures discussed in this chapter, and
many more.

For XSS attacks, can I just grep for and remove “<script></script>"
tags as a countermeasure?

Again, if only it were that easy. There are numerous ways to create
an XSS attack, not just through the “<script></script>" method used
in this chapter’s example. For instance, the data could be encoded in
Unicode, or perhaps the application wraps the malicious input with
script tags for the attacker. Instead of spending resources trying to
detect every possible variation, your organization should invest its
time and money into building secure websites and implementing
good countermeasures.

429

